ANALYTIC GEOMETRY

Length $\bar{P}_{1} P_{2}$ of a directed line segment with initial point P_{1} and

$$
d=\left|\overline{P_{1} P_{2}}\right|=\left|x_{2}-x_{1}\right|
$$ terminal point P_{2}.

Distance (d) between two given points $P_{1}\left(x_{1}, y_{1}\right)$ and $P_{2}\left(x_{2}, y_{2}\right)$.

$$
d=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}
$$

Coordinates of the point $\mathrm{P}(\mathrm{x}, \mathrm{y})$ which divides the $\quad \boldsymbol{x}=\frac{\boldsymbol{x}_{1}+\boldsymbol{r} x_{2}}{1+r} \quad r \neq-\mathbf{1}$ directed line segment $\vec{P}_{1} P_{2}$, given the points $P_{1}\left(x_{1}, y_{1}\right)$ and $\mathrm{P}_{2}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$, and ratio $\mathrm{r}=\overline{\mathrm{P}_{1} \mathrm{P}}: \overline{\mathrm{PP}}$

$$
y=\frac{y_{1}+r y_{2}}{1+r} \quad r \neq-1
$$

Coordinates of the midpoint $\operatorname{Pm}(x, y)$ of the directed line segment ${\bar{P} P_{1}}_{2}$, with given end points $P_{1}\left(x_{1}, y_{1}\right)$ y $P_{2}\left(x_{2}, y_{2}\right)$.

$$
\begin{aligned}
& x=\frac{x_{1}+x_{2}}{2} \\
& y=\frac{y_{1}+y_{2}}{2}
\end{aligned}
$$

ANALYTIC GEOMETRY

The slope or angular coefficient (m) of a line is the tangent of its angle of inclination (α).

$m=\tan (\alpha)$

Slope (m) of the straight line passing through two given points $P_{1}\left(x_{1}, y_{1}\right) \wedge P_{2}\left(x_{2}, y_{2}\right)$.

$$
m=\frac{y_{1}-y_{2}}{x_{1}-x_{2}} ; x_{1} \neq x_{2}
$$

Angle (θ) formed by two straight lines with initial slope m_{1} and terminal slope m_{2}.

$$
\tan \left(\theta_{1}\right)=\frac{m_{2}-m_{1}}{1+m_{2} m_{1}} ; m_{2} m_{1} \neq-1
$$

Necessary and sufficient condition for the parallelism of two given straight lines having slopes m_{1} and m_{2}.

$m_{1}=m_{2}$

Necessary and sufficient condition for the perpendicularity of two given straight lines having slopes m_{1} and m_{2}. $\quad \boldsymbol{m}_{\mathbf{1}} \boldsymbol{m}_{\mathbf{2}}=\mathbf{- 1}$
x 0

ANALYTIC GEOMETRY

Point-Slope Form of Equation of a Straight Line

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

$y=m x+b$ Straight Line Straight Line

$$
\frac{x}{a}+\frac{y}{b}=1 ; a \wedge b \neq 0
$$

General Form of the Equation of a Straight Line

$$
A x+B y+C=0
$$

$$
\text { Slope: } \boldsymbol{m}=-\frac{A}{B}
$$

$$
\text { Intercept: } \boldsymbol{b}=-\frac{C}{B}
$$

ANALYTIC GEOMETRY

From the general forms, $A x+B y+C=0$ y $A^{\prime} x+B^{\prime} y+C^{\prime}=0$; the following relations are necessary and sufficient conditions for

1. PARALLELISM: $-\frac{A}{B}=-\frac{A^{\prime}}{B^{\prime}} \Rightarrow A B^{\prime}-\boldsymbol{A}^{\prime} \boldsymbol{B}=0$
2. PERPENDICULARITY: $\boldsymbol{A} \boldsymbol{A}^{\prime}+\boldsymbol{B} \boldsymbol{B}^{\prime}=\mathbf{0}$
3. COINCIDENCE: $\boldsymbol{A}=\boldsymbol{k} \boldsymbol{A}^{\prime} ; \boldsymbol{B}=\boldsymbol{k} \boldsymbol{B}^{\prime} ; \boldsymbol{C}=\boldsymbol{k} \boldsymbol{C}^{\prime} \quad(\boldsymbol{k} \neq \mathbf{0})$
4. INTERSECTION IN ONE AND ONLY ONE POINT: $\frac{A}{\boldsymbol{B}} \neq \frac{A^{\prime}}{B^{\prime}} \Rightarrow \boldsymbol{A B} \boldsymbol{B}^{\prime}-\boldsymbol{A}^{\prime} \boldsymbol{B} \neq \mathbf{0}$

Normal Form of the equation of a straight line: $\boldsymbol{x} \cdot \boldsymbol{\operatorname { c o s }}(\boldsymbol{\theta})+\boldsymbol{y} \cdot \boldsymbol{\operatorname { s i n }}(\boldsymbol{\theta})-\boldsymbol{p}=\mathbf{0}$

To find the equation in the normal form of a line defined by the general form $\mathrm{Ax}+\mathrm{By}+\mathrm{C}=0$ divide each term by:

$$
r= \pm \sqrt{A^{2}+B^{2}}
$$

The distance "d" of a straight line to a given point: $\quad d=\frac{\left|A x_{1}+B y_{1}+C\right|}{\sqrt{A^{2}+B^{2}}}$

ANALYTIC GEOMETRY

TRANSLATION OF THE COORDINATE AXES

THEOREM. If the coordinate axes are translated to a new origin $O^{\prime}(h, k)$; The new parallel coordinate axes will be x^{\prime} and y^{\prime}, generating new coordinates of $P(x, y)$ and $P^{\prime}\left(x^{\prime}, y^{\prime}\right)$. Then, the equations of transformation from the old system to the new coordinate system are:

$$
\begin{aligned}
& \boldsymbol{x}=\boldsymbol{x}^{\prime}+\boldsymbol{h} \\
& \boldsymbol{y}=\boldsymbol{y}^{\prime}+\boldsymbol{k}
\end{aligned}
$$

ANALYTIC GEOMETRY

The circle whose center is the point $C(h, k)$ and whose radius is the constant " r " has as equation (STANDARD FORM): $\quad(\boldsymbol{x}-\boldsymbol{h})^{2}+(\boldsymbol{y}-\boldsymbol{k})^{2}=\boldsymbol{r}^{\mathbf{2}}$

The circle whose center is at the origin and whose radius is the constant " r " has as equation (CANONICAL FORM):

$$
x^{2}+y^{2}=r^{2}
$$

If we algebraically develop the equation of the circle in standard form, results the GENERAL FORM: $\quad x^{2}+y^{2}+D x+E y+F=0$ Where: $D=-2 h ; E=-2 k ; F=h^{2}+k^{2}-r^{2}$

To transform the equation of the circle in GENERAL FORM TO ITS STANDARD FORM, use the completing the square method, obtaining:

$$
\left(x+\frac{D}{2}\right)^{2}+\left(y+\frac{E}{2}\right)^{2}=\frac{D^{2}+E^{2}-4 F}{4} \square
$$

Where: $D^{2}+E^{2}-4 F>0$
Center: $\boldsymbol{C}(\boldsymbol{h}, \boldsymbol{k})=\boldsymbol{C}\left(-\frac{D}{2},-\frac{E}{2}\right)$
Radius: $r=\frac{\sqrt{D^{2}+E^{2}-4 F}}{2}$

ANALYTIC GEOMETRY

First Standard Equation of the parabola; vertex at the origin and axis coincident with the x-axis:

$$
y^{2}=4 p x
$$

FOCUS: $\mathrm{F}(\mathrm{p}, 0)$ DIRECTRIX: $x=-p$

$$
\left|\overline{L L^{\prime}}\right|=|4 p|
$$

First Standard Equation of the parabola; vertex at the origin and axis $x^{2}=4 \boldsymbol{p y}$ coincident with the y-axis:

FOCUS: F(0,p)
DIRECTRIX: $y=-p$

$$
\left|\overline{L L^{\prime}}\right|=|4 p|
$$

Second Standard Equation of the parabola; vertex in $\mathrm{V}(\mathrm{h}, \mathrm{k})$ and axis parallel to the x-axis:

$$
(y-k)^{2}=4 p(x-h)
$$

FOCUS: $F(h+p, k)$
DIRECTRIX: $\mathrm{x}=\mathrm{h}-\mathrm{p}$

$$
\left|\overline{L L^{\prime}}\right|=|4 p|
$$

Second Standard Equation of the parabola; vertex in $V(h, k)$ and axis parallel to the y-axis:
$(x-h)^{2}=4 p(y-k)$

FOCUS: $\mathrm{F}(\mathrm{h}, \mathrm{k}+\mathrm{p})$ DIRECTRIX: $\mathrm{y}=\mathrm{k}-\mathrm{p}$ $\left|\overline{L L^{\prime}}\right|=|4 p|$

ANALYTIC GEOMETRY

TEXAN

First Standard Equation of an ellipse；center at the origin and focal axis on the＂x＂axis．

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

FOCI：$F(c, 0) \wedge F^{\prime}(-c, 0)$
VERTICES：V（a，0）＾V＇（－a，0）
ENDS OF MINOR AXIS：A（0，b）＾A＇（0，－b）

First Standard Equation of an ellipse；center at the origin and focal axis on the＂y＂axis．

$$
\frac{x^{2}}{b^{2}}+\frac{y^{2}}{a^{2}}=1
$$

FOCI：$F(0, c) \wedge F^{\prime}(0,-c)$
VERTICES：V（0，a）$\wedge V^{\prime}(0,-a)$
ENDS OF MINOR AXIS：A（b，0）＾A＇（－b，0）

For both cases：

Eccentricity＜1

$$
\begin{array}{cl}
e=\frac{c}{a}=\frac{\sqrt{a^{2}-b^{2}}}{a} & \text { Latus Rectum } \\
c^{2}=a^{2}-b^{2} & \left|\overline{L L^{\prime}}\right|=\frac{2 b^{2}}{a}
\end{array}
$$

ELLIPSE

Where
F and $\mathrm{F}^{\prime}=$ Foci．
$1=$ focal axis．
V and $\mathrm{V}^{\prime}=$ vertices．
$\mathrm{VV}^{\prime}=$ major axis．
$\mathrm{C}=$ center
$l^{\prime}=$ normal axis．
$\mathrm{AA}^{\prime}=$ minor axis
$\mathrm{BB}^{\prime}=$ chord．
EE＇＝focal chord．
LL＇＝latus rectum．
DD＇＝diameter．
$\mathrm{FP}=$ focal radii．

ANALYTIC GEOMETRY

Second Standard Equation of an ellipse; center at $C(h, k)$ and focal axis on the " x " axis.

$$
\frac{(\boldsymbol{x}-\boldsymbol{h})^{2}}{a^{2}}+\frac{(\boldsymbol{y}-\boldsymbol{k})^{2}}{b^{2}}=1 \begin{aligned}
& \text { FOCI: } \mathrm{F}(h+c, k) \wedge \mathrm{F}^{\prime}(h-c, k) \\
& \text { VERTICES: V(h+a,k)^V'(h-a,k) } \\
& \text { ENDS OF MINOR AXIS: A(h,k+b) } 1 \mathrm{~A}^{\prime}(h, k-b)
\end{aligned}
$$

Second Standard Equation of an

For both cases:

$$
e=\frac{c}{a}=\frac{\sqrt{a^{2}-b^{2}}}{a}
$$

Latus Rectum

$$
\left|\overline{L L^{\prime}}\right|=\frac{2 b^{2}}{a} \quad c^{2}=a^{2}-b^{2}
$$

A quadratic equation in the variables x and y, lacking the $x y$ term, is:

$$
A x^{2}+C y^{2}+D x+E y+F=0
$$

If A and C have the same sign, the equation represents an ellipse, a single point or does not represent any locus.
NOTE: To obtain the standard form from the general form, complete the square. To obtain the general form from the standard form, develop algebraically.

ब 0
回in

ANALYTIC GEOMETRY

TEXAN

First Standard Equation of an hyperbola; center at the origin and focal axis on the " x " axis.

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1
$$

$$
\text { FOCI: } F(c, 0) \wedge F^{\prime}(-c, 0)
$$

VERTICES: V(a,0)^ V'(-a,0)

$$
\text { CONJUGATE AXIS: } A(0, b) \wedge A^{\prime}(0,-b)
$$

First Standard Equation of an hyperbola; center at the origin and focal axis on the " y " axis.

FOCI: $\mathrm{F}(0, \mathrm{c}) \wedge \mathrm{F}^{\prime}(\mathrm{O},-\mathrm{c})$
VERTICES: V(0,a) $\wedge V^{\prime}(0,-a)$
CONJUGATE AXIS: A(b,0) $\wedge A^{\prime}(-b, 0)$

For both cases:

Eccentricity>1

$$
\begin{array}{cc}
e=\frac{c}{a}=\frac{\sqrt{a^{2}+b^{2}}}{a} & c^{2}=a^{2}+b^{2} \\
\text { Latus Rectum } & \begin{array}{c}
\text { Asymptote } \\
\text { equations } \\
\text { bx-ay=0 }
\end{array} \\
\left|\overline{L L^{\prime}}\right|=\frac{2 b^{2}}{a} & \begin{array}{l}
\text { bx+ay=0 }
\end{array}
\end{array}
$$

HYPERBOLA

Where
F and $\mathrm{F}^{\prime}=\mathrm{Foci}$ $\mathrm{l}=$ focal axis.
V and V' = vertices
VV' = transverse axis
C = center.
l' = normal axis.
$\mathrm{AA}^{\prime}=$ conjugate axis
$\mathrm{BB}^{\prime}=$ chord .
EE' = focal chord.
LL' = latus rectum.
DD' = diameter.
$\mathrm{FP}=$ focal radii.

区 9

-

ANALYTIC GEOMETRY

TEXAN

Second Standard Equation of a hyperbola; center at $C(h, k)$ and

$$
\text { FOCI: } F(h+c, k) \wedge F^{\prime}(h-c, k)
$$ focal axis on the " x " axis.

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

$$
\text { VERTICES: } V(h+a, k) \wedge V^{\prime}(h-a, k)
$$ CONJUGATE AXIS: A(h,k+b)^A'(h,k-b)

Second Standard Equation of a hyperbola; center at $C(h, k)$ and focal axis on the " y " axis.

$$
\frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1
$$

FOCI: $\mathrm{F}(\mathrm{h}, \mathrm{k}+\mathrm{c}) \wedge \mathrm{F}^{\prime}(\mathrm{h}, \mathrm{k}-\mathrm{c})$
VERTICES: $V(h, k+a) \wedge V^{\prime}(h, k-a)$
CONJUGATE AXIS: $A(h+b, k) \wedge A^{\prime}(h-b, k)$

For both cases:

Eccentricity>1
$e=\frac{c}{a}=\frac{\sqrt{a^{2}+b^{2}}}{a}$

Latus Rectum

$$
\begin{aligned}
& \text { Latus Rectum } \\
& \left|\overline{L L^{\prime}}\right|=\frac{2 b^{2}}{a} \quad c^{2}=a^{2}+b^{2} \quad y-k= \pm \frac{b}{a}(x-h)
\end{aligned}
$$

A quadratic equation in the variables x and y, lacking the $x y$ term, is:

$$
A x^{2}+C y^{2}+D x+E y+F=0
$$

If A and C differ in sign, the equation represents a hyperbola or a pair of lines that intersect. NOTE: To obtain the standard form from the general form, complete the square. To obtain the general form from the standard form, develop algebraically.
©(冋)
O

-

