SYSTEMS OF TWO EQUATIONS IN TWO VARIABLES

TEXAN GLOBAL SCHOOL Global Online Learning

<u>GRAPHING METHOD</u>: Solve the following system of equations:

2x + y = 5 - - - - - 13x - y = 0 - - - - 2

1) Isolating "y" from each equation:

y=5-2x---(1)'

$$y = 3x - - - - 2'$$

2) Tabulating $(1)^{\prime}$ and $(2)^{\prime}$:

(1) [*] y=5-2x				وی _{y=3x}		
Х	У	P(x,y)		Х	У	P(x,y)
-2	y=5-2(-2)=9	P(-2,9)		-2	y=3(-2)=-6	P(-2,-6)
-1	y=5-2(-1)=7	P(-1,7)		-1	y=3(-1)=-3	P(-1,-3)
0	y=5-2(0)=5	P(0,5)		0	y=3(0)=0	P(0,0)
1	y=5-2(1)=3	P(1,3)		1	y=3(1)=3	P(1,3)
2	y=5-2(2)=1	P(2,1)		2	y=3(2)=6	P(2,6)

VERIFICATION: Because **x=1** ; **y=3**, substitute in:

1 2x + y = 5	2 3x - y = 0
2(1)+(3)=5	3(1)-(3)=0
2+3=5	3-3=0
5=5	0=0

Since "both" equalities are satisfied, we conclude that the SOLUTION is correct.

www.texanglobalschool.com

SYSTEMS OF TWO EQUATIONS IN TWO VARIABLES

ELIMINATION METHOD: Consists of eliminating one of the variables by adding or subtracting both equations.

ELIMINATION METHOD: Solve the following system of equations: 2x + y = 5 - - - - - (1)3x - y = 0 - - - - (2)1) <u>Eliminating "x"</u>: we multiply (1) by (3) and (2) by (-2): 6x + 3y = 15 - - - - - 1-6x + 2y = 0 - - - - - 2'2) Adding $(1)^{\prime}$ with $(2)^{\prime}$: 6x + 3v = 15-6x + 2y = 05v = 15v = 33) <u>Eliminating "x"</u>: adding (1) with (2): 2x + y = 53x - y = 05x = 5x = 1Hence, the solution point is P(x,y)=P(1,3).

www.texanglobalschool.com

EQUAL VALUES METHOD: Consists in isolating a variable from both equations, and set them equal to each other to form a new equation of a single variable

EQUAL VALUES METHOD: Solve the following system of equations: 2x + y = 5 - - - - - (1)3x - y = 0 - - - - (2)1) Isolating "y": $y = 5 - 2x - - - - (1)^{\prime}$ y = 3x - - - - (2)'2) Equal values between $(1)^r$ and $(2)^r$ and isolating "x": 5 - 2x = 3xx = 13) Isolating "x": $x = \frac{y}{3} - - - - - 2^{\prime\prime}$ 4) Equal values between $(1)^{\prime\prime}$ and $(2)^{\prime\prime}$: $\frac{5-y}{2} = \frac{y}{3}$ v = 3Hence, the solution point is P(x,y)=P(1,3).

SYSTEMS OF TWO EQUATIONS IN TWO VARIABLES

SUBSTITUTION METHOD: Implies isolating a variable to be substituted into the other equation.

SUBSTITUTION METHOD: Solve the following system of equations: 2x + y = 5 - - - - - 1 3x - y = 0 - - - - 21) Isolating "y" from 1: y = 5 - 2x - - - - 12) Substituting 1' in 2 and solving: 3x - (5 - 2x) = 0 x = 13) Substituting x=1 in 2 and solving: 3(1) - y = 0 y = 3Hence, the solution point is P(x,y)=P(1,3).

www.texanglobalschool.com

DETERMINANT: The determinant of a 2x2 matrix is the real number (
$$^{\Delta}$$
) calculated as:

$$\Delta = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - cb$$

DETERMINANTS METHOD: Calculate the determinant of the system (Δ_s), the determinant of "x" (Δ_x), and the determinant of "y" (Δ_y). Then:

$$x = \frac{\Delta_x}{\Delta_s} \land y = \frac{\Delta_y}{\Delta_s}$$