ISOLATING A VARIABLE

SYMMETRIC: $a = b \Leftrightarrow b = a$

TRANSITIVE: If $a = b \land b = c \implies a = c$

ADDITIVE: If $a = b \Rightarrow a + c = b + c$

Using the additive inverse: $a + (-c) = b + (-c) \implies a - c = b - c$

MULTIPLICATIVE: If a = b, $c \neq 0 \Rightarrow a \cdot c = b \cdot c$

Using the multiplicative inverse: $a \cdot \left(\frac{1}{c}\right) = b \cdot \left(\frac{1}{c}\right) \Rightarrow \frac{a}{c} = \frac{b}{c}$; $c \neq 0$

EXAMPLE: NEWTON'S LAW OF UNIVERSAL GRAVITATION. Isolating "m2":

to cancel "d²":
$$(F)(d^2) = \left(G\frac{m_1m_2}{d^2}\right)(d^2)$$

$$Fd^2 = G\frac{m_1m_2d^2}{d^2}$$

$$Fd^2 = G\frac{m_1m_2d^2}{d^2}$$
3) Applying symptoperty:

$$Fd^2 = G \frac{d^2}{d^2}$$

$$Fd^2 = Gm_1m_2$$

2) Applying multiplicative property to cancel "Gm₁":

$$(Fd^{2})\left(\frac{1}{Gm_{1}}\right) = (Gm_{1}m_{2})\left(\frac{1}{Gm_{1}}\right)$$

$$\frac{Fd^{2}}{Gm_{1}} = \left(\frac{Gm_{1}m_{2}}{Gm_{1}}\right)$$

$$\frac{Fd^{2}}{Gm_{1}} = \left(\frac{Gm_{\pi}m_{2}}{Gm_{\pi}}\right)$$

$$\frac{Fd^{2}}{Gm_{1}} = m_{2}$$
3) Applying symmetric

EXAMPLE: OHM'S LAW - Voltage "V" is directly proportional to the product of the resistance "R" with the current "I." Isolating "R":

$$V = RI$$

SOLUTION: 1) Applying multiplicative property to cancel "I":

$$(V)\left(\frac{1}{I}\right) = (RI)\left(\frac{1}{I}\right)$$

$$\frac{V}{I} = \frac{R \cdot I}{I}$$

$$\frac{V}{I} = R$$

2) Applying symmetric property:

$$R = \frac{V}{I} \quad \checkmark$$

EXAMPLE: The speed "S" is directly proportional to the ratio of the distance "d" with time "t." Isolating "d":

$$S = \frac{d}{t}$$

SOLUTION: 1) Applying multiplicative property to cancel "t":

$$(S)(t) = \left(\frac{d}{t}\right)(t)$$

$$(d \cdot t)^{1}$$

$$(S)(t) = \left(\frac{d}{t}\right)(t)$$

$$S \cdot t = d$$

2) Applying symmetric property:

$$S \cdot t = \left(\frac{d \cdot t}{t}\right)^{-1}$$
 $d = S \cdot t \checkmark$