CLASSIC SET THEORY

SET: The author of Sets Theory, GEORG CANTOR, defines a set as "the grouping of simple elements of a whole."

Set notation:

Sets are represented with "uppercase" letters (A, B, C, X, Y, Z). Elements separated by commas within braces $\{\}$.

EXAMPLE: Express the set that represents the vowels by extension and comprehension:

SOLUTION: SET BY EXTENSION: $A = \{a, e, i, o, u\}$

SET BY COMPREHENSION : A = $\{x/x \in vowel\}$

The set represented as "A", has vowel elements. The vowels are the elements separated by commas and enclosed with braces { }.

SET MEMBERSHIP (\in -> is an element of): an element is a member of any set A "if and only if (<=>)" that element is found "inside" A or belongs to A.

NON-MEMBERSHIP (∉ - **is not an element of**): an element does NOT belong to any set A "if and only if (<=>)" the element is NOT within A.

PROPER SUBSET (\subset): is defined from any two sets. Given any two sets A and B \Rightarrow A \subset B \Leftrightarrow "all" elements of A belong to B, provided that A \neq B.

IMPROPER SUBSET (\subseteq): is defined from any two sets. Given any wo sets A and B. \Rightarrow A \subseteq B \Leftrightarrow "all" elements of A belong to B.

EXAMPLE: Given two sets $A = \{1,2\} \land B = \{1, 2, 3\}$ analyze each question and answer "true" or "false" as the case may be. Justify your answer:

- ¿1 ∈ A? True, since element "1" is within set A or belongs to set A.
- ¿a ∈ A? False, since element "a" is not found within set A
 or does not belong to set A.
- ¿ 5 ∉ B? True, since element "5" is not actually inside B or does not belong to set B.
- $A \subseteq B \rightarrow$ this statement is TRUE because "ALL" the elements of A are inside B or belong to B .
- B ⊆ A → this statement is FALSE because "NOT ALL" the elements of B belong to A, so we say that B ⊆ A.

www.texanglobalschool.com

CLASSIC SET THEORY

EMPTY SET (\emptyset = {}): is a set that lacks elements.

UNIVERSAL SET (U): is a set that defines a certain situation.

VENN-EULER DIAGRAM: is a graphic representation of the universal set together with the relationships that exist between its subsets.

SETS OPERATIONS:

- UNION (A \cup B): If A and B are any two sets \Rightarrow A \cup B = $\{x \mid x \in A \lor x \in B\}$.
- INTERSECTION (A \cap B): If A and B are any two sets \Rightarrow A \cap B = {x / x \in A \wedge x \in B}.
- COMPLEMENT (A^c): If A is any set ⇒

 $A^c = \{x \mid x \notin A\}.$

EXAMPLE: Given the sets A={11,12,13,14}, B={11,14} obtain A \cup B , A \cap B, A \circ as well as the Venn-Euler Diagram of sets A and B:

SOLUTION: $A \cup B = A = A = \{11,12,13,14\}$ since $B \subseteq A$

 $A \cap B=B=\{11,14\}$ since $B \subseteq A$

 $A^c = {} = \emptyset$ since there are no missing elements to complete the universal set.

The Venn-Euler diagram is:

