

ELLIPSE

Where

F and F' = Foci. l = focal axis. V and V' = vertices. VV' = major axis.

C = center

l' = normal axis.

AA' = minor axis

BB' = chord.

EE' = focal chord.

LL' = latus rectum.

DD' = diameter.

FP = focal radii.

www.texanglobalschool.com

ELLIPSE

FIRST STANDARD EQUATION OF AN ELLIPSE

THEOREM. Equation of an ellipse with center at the origin and focal axis on the "x" axis:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

Foci in F(c,0) and F'(-c,0). Vertices (ends of the major axis) in V(a,0) and V'(-a,0). Ends of the minor axis are A(0,b) and A'(0,-b).

Equation of an ellipse with center at the origin and focal axis on the "y" axis:

$$\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1$$

Foci in F(0,c) and F'(0,-c). Vértices (ends of the major axis) in V(0,a) and V'(0,-a). Ends of the minor axis are A(b,0) and A'(-b,0).

Where:

- "a" is the length of the semi-major axis.
- "b" is the length of the semi-minor axis.
- "c" is a positive constant that represents the distance from the center to the focus.
- Relation between a, b, and c:

$$c^2 = a^2 - b^2$$

 Distance between the two foci is 2c and length of the major axis equal to 2a.

• Latus rectum:
$$|\overline{LL'}| = \frac{2b^2}{a}$$

· Eccentricity:

$$e = \frac{c}{a} = \frac{\sqrt{a^2 - b^2}}{a}$$

SECOND STANDARD EQUATION OF THE ELLIPSE

THEOREM. Equation of an ellipse with center at C(h,k) and axis parallel to the x-axis:

$$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$$

Foci in F(h+c,k) and F'(h-c,k). Vertices (ends of the major axis) in V(h+a,k) and V'(h-a,k). Ends of the minor axis are A(h,k+b) and A'(h,k-b).

Equation of an ellipse with center at C(h,k) and axis parallel to the y-axis:

$$\frac{(x-h)^2}{h^2} + \frac{(y-k)^2}{a^2} = 1$$

Foci in F(h,k+c) and F'(h,k-c). Vertices (ends of the major axis) in V(h,k+a) and V'(h,k-a). Ends of the minor axis are A(h+b,k) and A'(h-b,k).

Where:

- "a" is the length of the semi-major axis.
- "b" is the length of the semi-minor axis.
- "c" is a positive constant that represents the distance from the center to the focus.
- · Relation between a, b, and c:

$$c^2 = a^2 - b^2$$

- Distance between the two foci is 2c and length of the major axis equal to 2a.
- Latus rectum: $|\overline{LL'}| = \frac{2b^2}{a}$ Eccentricity:

$$e = \frac{c}{a} = \frac{\sqrt{a^2 - b^2}}{a}$$

www.texanglobalschool.com

ELLIPSE

TEXAN GLOBAL SCHOOL

Global Online Learning

EXAMPLE: Find the equation of the ellipse whose foci are the points (2,0), (-2,0); and its eccentricity is 2/3.

SOLUTION: 1) Foci F(2,0) and F'(-2.0), on the "x" axis.

Since the foci are in F(c,0) and F'(-c,0), hence c=2.

2) Midpoint is the origin.

$$P_m(x, y) = P_m\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$

$$P_m(x, y) = P_m\left(\frac{2-2}{2}, \frac{0+0}{2}\right) = P_m(0, 0)$$

3) Eccentricity:
$$e = \frac{2}{3} = \frac{c}{a}$$

4) Vertices (ends of the major axis) V(a,0) and V'(-a,0) =>V(3,0) and V'(-3,0).

5) Since a=3, c=2; finding "b":

$$c^2 = a^2 - b^2$$

$$(2)^2 = (3)^2 - b^2$$

$$4 = 9 - b^2$$

 $b^2 = 9 - 4$

$$b^2 = 5$$

$$b = \sqrt{5}$$

6) Ends of the minor axis A(0,b)and A'(0,-b); hence:

$$A(0,\sqrt{5}) \wedge A'(0,-\sqrt{5})$$

7) Since a=3, $b=\sqrt{5}$, the equation of an ellipse with center at the origin and focal axis on the "x" axis is:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

$$\frac{x^2}{(3)^2} + \frac{y^2}{(\sqrt{5})^2} = 1$$

$$\frac{x^2}{9} + \frac{y^2}{5} = 1$$

8) Latus rectum:

$$\left|\overline{LL'}\right| = \frac{2b^2}{a} = \frac{2(\sqrt{5})^2}{3} =$$

$$\left|\overline{LL'}\right| = \frac{2(5)}{3} = \frac{10}{3}$$

 $A'(0,-\sqrt{5})$

www.texanglobalschool.com