NOWI FDGE FOR THE WORL

ANALYTIC GEOMETRY

Length $\overline{P_1} \overline{P_2}$ of a directed line segment with initial point P₁ and terminal point P_2 .

$$d = |\overline{P_1}P_2| = |x_2 - x_1|$$

Global Online Learning

GLOBAL SCHOOL

TEXAN

Distance (d) between two given points $d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$ $P_1(x_1, y_1)$ and $P_2(x_2, y_2)$.

 $x = \frac{x_1 + rx_2}{1 + rx_2} \qquad r \neq -1$ Coordinates of the point P(x,y) which divides the directed line segment $\overline{P_1 P_2}$, given the points $P_1(x_1, y_1)$ and $P_2(x_2, y_2)$, and rati $r=P_1P:P_2$

$$y = \frac{y_1 + ry_2}{1 + r} \qquad r \neq -1$$

Coordinates of the midpoint Pm(x,y) of the directed line segment P₁ P₂, with given end points $P_1(x_1, y_1) y P_2(x_2, y_2).$

 $x = \frac{x_1 + x_2}{2}$ $y = \frac{y_1 + y_2}{2}$

www.texanglobalschool.com

ANALYTIC GEOMETRY

The slope or angular coefficient (m) of a line is the tangent of its angle of inclination (α).

Slope (m) of the straight line passing through two given points $P_1(x_1, y_1) \neq P_2(x_2, y_2)$.

Angle (θ) formed by two straight lines with initial slope m₁ and terminal slope m₂.

$$tan(\theta_1) = \frac{m_2 - m_1}{1 + m_2 m_1}$$
; $m_2 m_1 \neq -1$

TEXAN

Global Online Learning

GLOBAL SCHOOL

 $m = tan(\alpha)$

 $m = \frac{y_1 - y_2}{x_1 - x_2} ; \ x_1 \neq x_2$

Necessary and sufficient condition for the parallelism of two given straight lines having slopes m1 and m2.

$$m_1 = m_2$$

Necessary and sufficient condition for the perpendicularity of two given straight lines having slopes m₁ and m₂. $m_1m_2 =$

www.texanglobalschool.com

ANALYTIC GEOMETRY

Point-Slope Form of Equation of a Straight Line

Slope-Intercept Form of the Equation of a Straight Line

in

Intercept Form of the Equation of a **Straight Line**

General Form of the Equation of a Straight Line

$$\frac{1}{a} + \frac{y}{b} = 1 ; a \wedge b$$

Slope:
$$m = -\frac{A}{B}$$

Intercept: $b = -\frac{C}{B}$

Ax + By + C = 0

www.texanglobalschool.com

$$y = mx + b$$

()

 $y - y_1 = m(x - x_1)$

$$\frac{x}{a} + \frac{y}{b} = 1 ; a \wedge b \neq$$